Building our New Data-set




In the previous tutorial, we built a program to pull the source code from Yahoo Finance, and what we ended up with is just like the starting point of documents from the beginning of this series. HTML source code of stock fundamental data.

So, now what we want to do is analyze that data. We could do this all together, not actually downloading the source code, so I think it is preferable to have the data on-hand. You already accessed it anyway, so the only added cost is just hard drive space.

import pandas as pd
import os
import time
from datetime import datetime

from time import mktime
import matplotlib
import matplotlib.pyplot as plt
from matplotlib import style
style.use("dark_background")

import re


##path = "X:/Backups/intraQuarter"

def Forward(gather=["Total Debt/Equity",
                      'Trailing P/E',
                      'Price/Sales',
                      'Price/Book',
                      'Profit Margin',
                      'Operating Margin',
                      'Return on Assets',
                      'Return on Equity',
                      'Revenue Per Share',
                      'Market Cap',
                        'Enterprise Value',
                        'Forward P/E',
                        'PEG Ratio',
                        'Enterprise Value/Revenue',
                        'Enterprise Value/EBITDA',
                        'Revenue',
                        'Gross Profit',
                        'EBITDA',
                        'Net Income Avl to Common ',
                        'Diluted EPS',
                        'Earnings Growth',
                        'Revenue Growth',
                        'Total Cash',
                        'Total Cash Per Share',
                        'Total Debt',
                        'Current Ratio',
                        'Book Value Per Share',
                        'Cash Flow',
                        'Beta',
                        'Held by Insiders',
                        'Held by Institutions',
                        'Shares Short (as of',
                        'Short Ratio',
                        'Short % of Float',
                        'Shares Short (prior ']):
    
##    statspath = path+'/_KeyStats'
##    stock_list = [x[0] for x in os.walk(statspath)]
    df = pd.DataFrame(columns = ['Date',
                                 'Unix',
                                 'Ticker',
                                 'Price',
                                 'stock_p_change',
                                 'SP500',
                                 'sp500_p_change',
                                 'Difference',
                                 ##############
                                 'DE Ratio',
                                 'Trailing P/E',
                                 'Price/Sales',
                                 'Price/Book',
                                 'Profit Margin',
                                 'Operating Margin',
                                 'Return on Assets',
                                 'Return on Equity',
                                 'Revenue Per Share',
                                 'Market Cap',
                                 'Enterprise Value',
                                 'Forward P/E',
                                 'PEG Ratio',
                                 'Enterprise Value/Revenue',
                                 'Enterprise Value/EBITDA',
                                 'Revenue',
                                 'Gross Profit',
                                 'EBITDA',
                                 'Net Income Avl to Common ',
                                 'Diluted EPS',
                                 'Earnings Growth',
                                 'Revenue Growth',
                                 'Total Cash',
                                 'Total Cash Per Share',
                                 'Total Debt',
                                 'Current Ratio',
                                 'Book Value Per Share',
                                 'Cash Flow',
                                 'Beta',
                                 'Held by Insiders',
                                 'Held by Institutions',
                                 'Shares Short (as of',
                                 'Short Ratio',
                                 'Short % of Float',
                                 'Shares Short (prior ',                                
                                 ##############
                                 'Status'])


    file_list = os.listdir("forward")

    for each_file in file_list:

        ticker = each_file.split(".html")[0]
        full_file_path = "forward/"+each_file
        source = open(full_file_path,"r").read()


        

        try:
            value_list = []

            for each_data in gather:
                try:
                    regex = re.escape(each_data) + r'.*?(\d{1,8}\.\d{1,8}M?B?|N/A)%?'
                    value = re.search(regex, source)
                    value = (value.group(1))

                    if "B" in value:
                        value = float(value.replace("B",''))*1000000000

                    elif "M" in value:
                        value = float(value.replace("M",''))*1000000

                    value_list.append(value)
                    
                    
                except Exception as e:
                    value = "N/A"
                    value_list.append(value)

            if value_list.count("N/A") > 15:
                pass
            else:
                

                df = df.append({'Date':"N/A",
                                    'Unix':"N/A",
                                    'Ticker':ticker,
                                    
                                    'Price':"N/A",
                                    'stock_p_change':"N/A",
                                    'SP500':"N/A",
                                    'sp500_p_change':"N/A",
                                    'Difference':"N/A",
                                    'DE Ratio':value_list[0],
                                    #'Market Cap':value_list[1],
                                    'Trailing P/E':value_list[1],
                                    'Price/Sales':value_list[2],
                                    'Price/Book':value_list[3],
                                    'Profit Margin':value_list[4],
                                    'Operating Margin':value_list[5],
                                    'Return on Assets':value_list[6],
                                    'Return on Equity':value_list[7],
                                    'Revenue Per Share':value_list[8],
                                    'Market Cap':value_list[9],
                                     'Enterprise Value':value_list[10],
                                     'Forward P/E':value_list[11],
                                     'PEG Ratio':value_list[12],
                                     'Enterprise Value/Revenue':value_list[13],
                                     'Enterprise Value/EBITDA':value_list[14],
                                     'Revenue':value_list[15],
                                     'Gross Profit':value_list[16],
                                     'EBITDA':value_list[17],
                                     'Net Income Avl to Common ':value_list[18],
                                     'Diluted EPS':value_list[19],
                                     'Earnings Growth':value_list[20],
                                     'Revenue Growth':value_list[21],
                                     'Total Cash':value_list[22],
                                     'Total Cash Per Share':value_list[23],
                                     'Total Debt':value_list[24],
                                     'Current Ratio':value_list[25],
                                     'Book Value Per Share':value_list[26],
                                     'Cash Flow':value_list[27],
                                     'Beta':value_list[28],
                                     'Held by Insiders':value_list[29],
                                     'Held by Institutions':value_list[30],
                                     'Shares Short (as of':value_list[31],
                                     'Short Ratio':value_list[32],
                                     'Short % of Float':value_list[33],
                                     'Shares Short (prior ':value_list[34],
                                    'Status':"N/A"},
                                   ignore_index=True)
        except Exception as e:
            pass



    df.to_csv("forward_sample_WITH_NA.csv")
    
        

    


Forward()
    



		

The next tutorial:





  • Intro to Machine Learning with Scikit Learn and Python
  • Simple Support Vector Machine (SVM) example with character recognition
  • Our Method and where we will be getting our Data
  • Parsing data
  • More Parsing
  • Structuring data with Pandas
  • Getting more data and meshing data sets
  • Labeling of data part 1
  • Labeling data part 2
  • Finally finishing up the labeling
  • Linear SVC Machine learning SVM example with Python
  • Getting more features from our data
  • Linear SVC machine learning and testing our data
  • Scaling, Normalizing, and machine learning with many features
  • Shuffling our data to solve a learning issue
  • Using Quandl for more data
  • Improving our Analysis with a more accurate measure of performance in relation to fundamentals
  • Learning and Testing our Machine learning algorithm
  • More testing, this time including N/A data
  • Back-testing the strategy
  • Pulling current data from Yahoo
  • Building our New Data-set
  • Searching for investment suggestions
  • Raising investment requirement standards
  • Testing raised standards
  • Streamlining the changing of standards