Mapping function to dataframe
import datetime
import pandas as pd
import pandas.io.data
from pandas import Series, DataFrame
import matplotlib.pyplot as plt
import matplotlib as mpl
import matplotlib.ticker as mticker
import matplotlib.dates as mdates
from matplotlib import style
import numpy as np
import time
import math
import zipline as zp
from zipline.finance.slippage import FixedSlippage
style.use('ggplot')
def outlier_fixing(stock_name,ma1=100,ma2=250,ma3=500,ma4=5000):
df = pd.read_csv('X:/stocks_sentdex_dates_short.csv', index_col='time', parse_dates=True)
print df.head()
df = df[df.type == stock_name.lower()]
std = pd.rolling_std(df['close'], 25, min_periods=1)
print std
df['std'] = pd.rolling_std(df['close'], 25, min_periods=1)
df = df[df['std'] < 17]
MA1 = pd.rolling_mean(df['value'], ma1)
MA2 = pd.rolling_mean(df['value'], ma2)
MA3 = pd.rolling_mean(df['value'], ma3)
MA4 = pd.rolling_mean(df['value'], ma4)
ax1 = plt.subplot(3, 1, 1)
df['close'].plot(label='Price')
ax2 = plt.subplot(3, 1, 2, sharex = ax1)
MA1.plot(label=(str(ma1)+'MA'))
MA2.plot(label=(str(ma2)+'MA'))
MA3.plot(label=(str(ma3)+'MA'))
MA4.plot(label=(str(ma4)+'MA'))
ax3 = plt.subplot(3, 1, 3, sharex = ax1)
df['std'].plot(label='Deviation')
plt.legend()
plt.show()
#outlier_fixing('btcusd',ma1=100,ma2=2500,ma3=5000,ma4=50000)
def single_stock(stock_name,ma1=100,ma2=250,ma3=500,ma4=5000):
df = pd.read_csv('X:/stocks_sentdex_dates_full.csv', index_col='time', parse_dates=True)
print df.head()
df = df[df.type == stock_name.lower()]
MA1 = pd.rolling_mean(df['value'], ma1)
MA2 = pd.rolling_mean(df['value'], ma2)
MA3 = pd.rolling_mean(df['value'], ma3)
MA4 = pd.rolling_mean(df['value'], ma4)
ax1 = plt.subplot(2, 1, 1)
df['close'].plot(label='Price')
ax2 = plt.subplot(2, 1, 2, sharex = ax1)
MA1.plot(label=(str(ma1)+'MA'))
MA2.plot(label=(str(ma2)+'MA'))
MA3.plot(label=(str(ma3)+'MA'))
MA4.plot(label=(str(ma4)+'MA'))
plt.legend()
plt.show()
# new function
def calc_position(ma1, ma2, ma3, ma4):
if ma4 > ma1 > ma2 > ma3:
return 1
elif ma1 > ma4 > ma2 > ma3:
return 2
elif ma1 > ma2 > ma4 > ma3:
return 3
elif ma1 > ma2 > ma3 > ma4:
return 4
elif ma1 < ma2 < ma3 < ma4:
return -4
elif ma1 < ma2 < ma4 < ma3:
return -3
elif ma1 < ma4 < ma2 < ma3:
return - 2
elif ma4 < ma1 < ma2 < ma3:
return -1
else:
return None
def single_stock_auto_MA(stock_name, div1=275, div2=110, div3=55, div4=5.5):
df = pd.read_csv('X:/stocks_sentdex_dates_full.csv', index_col='time', parse_dates=True)
df = df[df.type == stock_name.lower()]
count = df['type'].value_counts()
count = int(count[stock_name])
MA1 = pd.rolling_mean(df['value'], (count/div1))
MA2 = pd.rolling_mean(df['value'], (count/div2))
MA3 = pd.rolling_mean(df['value'], (count/div3))
MA4 = pd.rolling_mean(df['value'], (count/div4))
SP = int(math.ceil(count/div4))
df['MA1'] = MA1
df['MA2'] = MA2
df['MA3'] = MA3
df['MA4'] = MA4
df = df[SP:]
del df['MA100']
del df['MA250']
del df['MA500']
del df['MA5000']
df['Pos'] = map(calc_position, df['MA1'],df['MA2'],df['MA3'],df['MA4'])
df['Change'] = df['Pos'].diff()
#####################
#####################
#####################
#####################
ax1 = plt.subplot(2, 1, 1)
df['close'].plot(label='Price')
ax2 = plt.subplot(2, 1, 2, sharex = ax1)
df['MA1'].plot(label=(str(count/div1)+'MA'))
df['MA2'].plot(label=(str(count/div2)+'MA'))
df['MA3'].plot(label=(str(count/div3)+'MA'))
df['MA4'].plot(label=(str(int(round((count/div4), 0)))+'MA'))
plt.legend()
plt.show()
single_stock_auto_MA('bac')
The next tutorial: