so we've shown some examples that look promising, but we're unsure about their
variables, and we're not sure they wholistically beat doubler.
Let's begin to work out that stuff.
The question is, can we find a simple variable change where there is both
lower risk, and higher profit... and soon, is this the case accross an average
of 1 million samples.
import random
import matplotlib
import matplotlib.pyplot as plt
import time
lower_bust = 31.235
higher_profit = 63.208
# back to 1,000
sampleSize = 1000
startingFunds = 10000
wagerSize = 100
wagerCount = 100
def rollDice():
roll = random.randint(1,100)
if roll == 100:
return False
elif roll <= 50:
return False
elif 100 > roll >= 50:
return True
def multiple_bettor(funds,initial_wager,wager_count):#,color):
#add
global multiple_busts
global multiple_profits
value = funds
wager = initial_wager
wX = []
vY = []
currentWager = 1
previousWager = 'win'
previousWagerAmount = initial_wager
while currentWager <= wager_count:
if previousWager == 'win':
if rollDice():
value += wager
wX.append(currentWager)
vY.append(value)
else:
value -= wager
previousWager = 'loss'
previousWagerAmount = wager
wX.append(currentWager)
vY.append(value)
if value <= 0:
multiple_busts += 1
break
elif previousWager == 'loss':
if rollDice():
#### must change the multiple ####
wager = previousWagerAmount * random_multiple
if (value - wager) <= 0:
wager = value
value += wager
wager = initial_wager
previousWager = 'win'
wX.append(currentWager)
vY.append(value)
else:
wager = previousWagerAmount * random_multiple
if (value - wager) <= 0:
wager = value
value -= wager
previousWager = 'loss'
previousWagerAmount = wager
wX.append(currentWager)
vY.append(value)
if value <= 0:
#change
multiple_busts += 1
break
currentWager += 1
#plt.plot(wX,vY)
#####################
if value > funds:
#change
multiple_profits+=1
def doubler_bettor(funds,initial_wager,wager_count,color):
global doubler_busts
global doubler_profits
value = funds
wager = initial_wager
wX = []
vY = []
currentWager = 1
previousWager = 'win'
previousWagerAmount = initial_wager
while currentWager <= wager_count:
if previousWager == 'win':
if rollDice():
value += wager
wX.append(currentWager)
vY.append(value)
else:
value -= wager
previousWager = 'loss'
previousWagerAmount = wager
wX.append(currentWager)
vY.append(value)
if value < 0:
currentWager += 10000000000000000
doubler_busts += 1
elif previousWager == 'loss':
if rollDice():
wager = previousWagerAmount * 2
if (value - wager) < 0:
wager = value
value += wager
wager = initial_wager
previousWager = 'win'
wX.append(currentWager)
vY.append(value)
else:
wager = previousWagerAmount * 2
if (value - wager) < 0:
wager = value
value -= wager
previousWager = 'loss'
previousWagerAmount = wager
wX.append(currentWager)
vY.append(value)
if value <= 0:
currentWager += 10000000000000000
doubler_busts += 1
currentWager += 1
#plt.plot(wX,vY,color)
#####################
if value > funds:
doubler_profits+=1
def simple_bettor(funds,initial_wager,wager_count,color):
global simple_busts
global simple_profits
value = funds
wager = initial_wager
wX = []
vY = []
currentWager = 1
while currentWager <= wager_count:
if rollDice():
value += wager
wX.append(currentWager)
vY.append(value)
else:
value -= wager
wX.append(currentWager)
vY.append(value)
if value <= 0:
currentWager += 10000000000000000
simple_busts +=1
currentWager += 1
plt.plot(wX,vY,color)
if value > funds:
simple_profits+=1
x = 0
#Doubler Bettor Bust Chances: 84.1457... so anything less than this... aaaand
#Doubler Bettor Profit Chances: 15.6355 ... aaaand better than this.
while x < 10000:
######## move this stuff in here for the maths.
multiple_busts = 0.0
multiple_profits = 0.0
# now we're wanting to do 100 attempts to get a good sample #
multipleSampSize = 100000
currentSample = 1
random_multiple = random.uniform(0.1,10.0)
#random_multiple = 2.00
#print((random_multiple
# adding this....
while currentSample <= multipleSampSize:
multiple_bettor(startingFunds,wagerSize,wagerCount)
#add one to sample
currentSample += 1
if ((multiple_busts/multipleSampSize)*100.00 < lower_bust) and ((multiple_profits/multipleSampSize)*100.00 > higher_profit):
print(('#################################################'))
print(('found a winner, the multiple was:',random_multiple))
print(('Lower Bust Rate Than:',lower_bust))
print(('Higher profit rate than:',higher_profit))
print(('Bust Rate:',(multiple_busts/multipleSampSize)*100.00))
print(('Profit Rate:',(multiple_profits/multipleSampSize)*100.00))
print(('#################################################'))
time.sleep(5)
#plt.show()
else:
pass
## print(('####################################'))
## print(('To beat:'))
## print(('Lower Bust Rate Than:',lower_bust))
## print(('Higher profit rate than:',higher_profit))
## print(('Bust Rate:',(multiple_busts/multipleSampSize)*100.00))
## print(('Profit Rate:',(multiple_profits/multipleSampSize)*100.00))
## print(('####################################'))
##
## #clears the figure
## plt.clf()
x+=1