Hello and welcome to part 2 of machine learning and pattern recognition for use with stocks and Forex trading.
The first thing we need to do is go ahead and plot this data out to see what we're working with, and see what our goals are.
It's a good idea to get comfortable with visualizing data in Python.
import matplotlib import matplotlib.pyplot as plt import matplotlib.ticker as mticker import matplotlib.dates as mdates import numpy as np from matplotlib import style style.use("ggplot") def graphRawFX(): date,bid,ask = np.loadtxt('GBPUSD1d.txt', unpack=True, delimiter=',', converters={0:mdates.strpdate2num('%Y%m%d%H%M%S')}) fig=plt.figure(figsize=(10,7)) ax1 = plt.subplot2grid((40,40), (0,0), rowspan=40, colspan=40) ax1.plot(date,bid) ax1.plot(date,ask) ax1.xaxis.set_major_formatter(mdates.DateFormatter('%Y-%m-%d %H:%M:%S')) for label in ax1.xaxis.get_ticklabels(): label.set_rotation(45) plt.subplots_adjust(bottom=.23) plt.gca().get_yaxis().get_major_formatter().set_useOffset(False) plt.grid(True) plt.show()