import urllib2
import time
import datetime
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.ticker as mticker
import matplotlib.dates as mdates
from matplotlib.finance import candlestick
import matplotlib
import pylab
matplotlib.rcParams.update({'font.size': 9})
evenBetter = ['AWH', 'AFAM', 'ACAS', 'ASI', 'NLY', 'ANH', 'AIZ', 'AXS', 'BHLB', 'COF', 'CMO', 'DYN', 'FDEF', 'HMN', 'IM', 'IRDM', 'KMPR', 'LNC', 'LMIA', 'MANT', 'MCGC', 'MRH', 'MVC', 'NAVG', 'OVTI', 'PRE', 'PMC', 'PJC', 'PTP', 'BPOP', 'PL', 'RF', 'SKYW', 'STI', 'SPN', 'SYA', 'TECD', 'TSYS', 'TITN', 'TPC', 'UNM', 'VOXX', 'XL']
def rsiFunc(prices, n=14):
deltas = np.diff(prices)
seed = deltas[:n+1]
up = seed[seed>=0].sum()/n
down = -seed[seed<0].sum()/n
rs = up/down
rsi = np.zeros_like(prices)
rsi[:n] = 100. - 100./(1.+rs)
for i in range(n, len(prices)):
delta = deltas[i-1] # the diff is 1 shorter
if delta>0:
upval = delta
downval = 0.
else:
upval = 0.
downval = -delta
up = (up*(n-1) + upval)/n
down = (down*(n-1) + downval)/n
rs = up/down
rsi[i] = 100. - 100./(1.+rs)
return rsi
def movingaverage(values,window):
weigths = np.repeat(1.0, window)/window
smas = np.convolve(values, weigths, 'valid')
return smas # as a numpy array
########EMA CALC ADDED############
def ExpMovingAverage(values, window):
weights = np.exp(np.linspace(-1., 0., window))
weights /= weights.sum()
a = np.convolve(values, weights, mode='full')[:len(values)]
a[:window] = a[window]
return a
def computeMACD(x, slow=26, fast=12):
"""
compute the MACD (Moving Average Convergence/Divergence) using a fast and slow exponential moving avg'
return value is emaslow, emafast, macd which are len(x) arrays
"""
emaslow = ExpMovingAverage(x, slow)
emafast = ExpMovingAverage(x, fast)
return emaslow, emafast, emafast - emaslow
###############################
def graphData(stock,MA1,MA2):
#######################################
#######################################
'''
Use this to dynamically pull a stock:
'''
try:
print 'Currently Pulling',stock
netIncomeAr = []
revAr = []
ROCAr = []
endLink = 'sort_order=asc&auth_token=a3fpXxHfsiN7AF4gjakQ'
try:
netIncome = urllib2.urlopen('http://www.quandl.com/api/v1/datasets/OFDP/DMDRN_'+stock.upper()+'_NET_INC.csv?&'+endLink).read()
revenue = urllib2.urlopen('http://www.quandl.com/api/v1/datasets/OFDP/DMDRN_'+stock.upper()+'_REV_LAST.csv?&'+endLink).read()
ROC = urllib2.urlopen('http://www.quandl.com/api/v1/datasets/OFDP/DMDRN_'+stock.upper()+'_ROC.csv?&'+endLink).read()
splitNI = netIncome.split('\n')
print 'Net Income:'
for eachNI in splitNI[1:-1]:
print eachNI
netIncomeAr.append(eachNI)
print '_________'
splitRev = revenue.split('\n')
print 'Revenue:'
for eachRev in splitRev[1:-1]:
print eachRev
revAr.append(eachRev)
print '_________'
splitROC = ROC.split('\n')
print 'Return on Capital:'
for eachROC in splitROC[1:-1]:
print eachROC
ROCAr.append(eachROC)
incomeDate, income = np.loadtxt(netIncomeAr, delimiter=',',unpack=True,
converters={ 0: mdates.strpdate2num('%Y-%m-%d')})
revDate, revenue = np.loadtxt(revAr, delimiter=',',unpack=True,
converters={ 0: mdates.strpdate2num('%Y-%m-%d')})
rocDate, ROC = np.loadtxt(ROCAr, delimiter=',',unpack=True,
converters={ 0: mdates.strpdate2num('%Y-%m-%d')})
except Exception, e:
print 'failed in the quandl grab'
print str(e)
time.sleep(555)
print str(datetime.datetime.fromtimestamp(int(time.time())).strftime('%Y-%m-%d %H:%M:%S'))
#Keep in mind this is close high low open, lol.
urlToVisit = 'http://chartapi.finance.yahoo.com/instrument/1.0/'+stock+'/chartdata;type=quote;range=10y/csv'
stockFile =[]
try:
sourceCode = urllib2.urlopen(urlToVisit).read()
splitSource = sourceCode.split('\n')
for eachLine in splitSource:
splitLine = eachLine.split(',')
if len(splitLine)==6:
if 'values' not in eachLine:
stockFile.append(eachLine)
except Exception, e:
print str(e), 'failed to organize pulled data.'
except Exception,e:
print str(e), 'failed to pull pricing data'
#######################################
#######################################
try:
date, closep, highp, lowp, openp, volume = np.loadtxt(stockFile,delimiter=',', unpack=True,
converters={ 0: mdates.strpdate2num('%Y%m%d')})
x = 0
y = len(date)
newAr = []
while x < y:
appendLine = date[x],openp[x],closep[x],highp[x],lowp[x],volume[x]
newAr.append(appendLine)
x+=1
Av1 = movingaverage(closep, MA1)
Av2 = movingaverage(closep, MA2)
SP = len(date[MA2-1:])
fig = plt.figure(facecolor='#07000d')
ax1 = plt.subplot2grid((9,4), (1,0), rowspan=4, colspan=4, axisbg='#07000d')
candlestick(ax1, newAr[-SP:], width=.6, colorup='#53c156', colordown='#ff1717')
Label1 = str(MA1)+' SMA'
Label2 = str(MA2)+' SMA'
ax1.plot(date[-SP:],Av1[-SP:],'#e1edf9',label=Label1, linewidth=1.5)
ax1.plot(date[-SP:],Av2[-SP:],'#4ee6fd',label=Label2, linewidth=1.5)
ax1.grid(True, color='w')
ax1.xaxis.set_major_locator(mticker.MaxNLocator(10))
ax1.xaxis.set_major_formatter(mdates.DateFormatter('%Y-%m-%d'))
ax1.yaxis.label.set_color("w")
ax1.spines['bottom'].set_color("#5998ff")
ax1.spines['top'].set_color("#5998ff")
ax1.spines['left'].set_color("#5998ff")
ax1.spines['right'].set_color("#5998ff")
ax1.tick_params(axis='y', colors='w')
plt.gca().yaxis.set_major_locator(mticker.MaxNLocator(prune='upper'))
ax1.tick_params(axis='x', colors='w')
plt.ylabel('Stock price and Volume')
maLeg = plt.legend(loc=9, ncol=2, prop={'size':7},
fancybox=True, borderaxespad=0.)
maLeg.get_frame().set_alpha(0.4)
textEd = pylab.gca().get_legend().get_texts()
pylab.setp(textEd[0:5], color = 'w')
volumeMin = 0
ax0 = plt.subplot2grid((9,4), (0,0), sharex=ax1, rowspan=1, colspan=4, axisbg='#07000d')
rsi = rsiFunc(closep)
rsiCol = '#c1f9f7'
posCol = '#386d13'
negCol = '#8f2020'
ax0.plot(date[-SP:], rsi[-SP:], rsiCol, linewidth=1.5)
ax0.axhline(70, color=negCol)
ax0.axhline(30, color=posCol)
ax0.fill_between(date[-SP:], rsi[-SP:], 70, where=(rsi[-SP:]>=70), facecolor=negCol, edgecolor=negCol, alpha=0.5)
ax0.fill_between(date[-SP:], rsi[-SP:], 30, where=(rsi[-SP:]<=30), facecolor=posCol, edgecolor=posCol, alpha=0.5)
ax0.set_yticks([30,70])
ax0.yaxis.label.set_color("w")
ax0.spines['bottom'].set_color("#5998ff")
ax0.spines['top'].set_color("#5998ff")
ax0.spines['left'].set_color("#5998ff")
ax0.spines['right'].set_color("#5998ff")
ax0.tick_params(axis='y', colors='w')
ax0.tick_params(axis='x', colors='w')
plt.ylabel('RSI')
ax1v = ax1.twinx()
ax1v.fill_between(date[-SP:],volumeMin, volume[-SP:], facecolor='#00ffe8', alpha=.4)
ax1v.axes.yaxis.set_ticklabels([])
ax1v.grid(False)
###Edit this to 3, so it's a bit larger
ax1v.set_ylim(0, 3*volume.max())
ax1v.spines['bottom'].set_color("#5998ff")
ax1v.spines['top'].set_color("#5998ff")
ax1v.spines['left'].set_color("#5998ff")
ax1v.spines['right'].set_color("#5998ff")
ax1v.tick_params(axis='x', colors='w')
ax1v.tick_params(axis='y', colors='w')
ax2 = plt.subplot2grid((9,4), (5,0), sharex=ax1, rowspan=1, colspan=4, axisbg='#07000d')
fillcolor = '#00ffe8'
nslow = 26
nfast = 12
nema = 9
emaslow, emafast, macd = computeMACD(closep)
ema9 = ExpMovingAverage(macd, nema)
ax2.plot(date[-SP:], macd[-SP:], color='#4ee6fd', lw=2)
ax2.plot(date[-SP:], ema9[-SP:], color='#e1edf9', lw=1)
ax2.fill_between(date[-SP:], macd[-SP:]-ema9[-SP:], 0, alpha=0.5, facecolor=fillcolor, edgecolor=fillcolor)
plt.gca().yaxis.set_major_locator(mticker.MaxNLocator(prune='upper'))
ax2.spines['bottom'].set_color("#5998ff")
ax2.spines['top'].set_color("#5998ff")
ax2.spines['left'].set_color("#5998ff")
ax2.spines['right'].set_color("#5998ff")
ax2.tick_params(axis='x', colors='w')
ax2.tick_params(axis='y', colors='w')
plt.ylabel('MACD', color='w')
ax2.yaxis.set_major_locator(mticker.MaxNLocator(nbins=5, prune='upper'))
######################################
######################################
ax3 = plt.subplot2grid((9,4), (6,0), sharex=ax1, rowspan=1, colspan=4, axisbg='#07000d')
ax3.plot(incomeDate,income,'#4ee6fd')
ax3.spines['bottom'].set_color("#5998ff")
ax3.spines['top'].set_color("#5998ff")
ax3.spines['left'].set_color("#5998ff")
ax3.spines['right'].set_color("#5998ff")
ax3.tick_params(axis='x', colors='w')
ax3.tick_params(axis='y', colors='w')
ax3.yaxis.set_major_locator(mticker.MaxNLocator(nbins=4, prune='upper'))
plt.ylabel('NI', color='w')
ax4 = plt.subplot2grid((9,4), (7,0),sharex=ax1, rowspan=1, colspan=4, axisbg='#07000d')
ax4.plot(revDate, revenue,'#4ee6fd')
ax4.spines['bottom'].set_color("#5998ff")
ax4.spines['top'].set_color("#5998ff")
ax4.spines['left'].set_color("#5998ff")
ax4.spines['right'].set_color("#5998ff")
ax4.tick_params(axis='x', colors='w')
ax4.tick_params(axis='y', colors='w')
ax4.yaxis.set_major_locator(mticker.MaxNLocator(nbins=4, prune='upper'))
plt.ylabel('Rev', color='w')
ax5 = plt.subplot2grid((9,4), (8,0), rowspan=1, sharex=ax1, colspan=4, axisbg='#07000d')
ax5.plot(rocDate, ROC,'#4ee6fd')
ax5.spines['bottom'].set_color("#5998ff")
ax5.spines['top'].set_color("#5998ff")
ax5.spines['left'].set_color("#5998ff")
ax5.spines['right'].set_color("#5998ff")
ax5.tick_params(axis='x', colors='w')
ax5.tick_params(axis='y', colors='w')
ax5.yaxis.set_major_locator(mticker.MaxNLocator(nbins=4, prune='upper'))
plt.ylabel('ROC', color='w')
for label in ax5.xaxis.get_ticklabels():
label.set_rotation(45)
plt.suptitle(stock,color='w')
plt.setp(ax0.get_xticklabels(), visible=False)
### add this ####
plt.setp(ax1.get_xticklabels(), visible=False)
plt.setp(ax2.get_xticklabels(), visible=False)
plt.setp(ax3.get_xticklabels(), visible=False)
plt.setp(ax4.get_xticklabels(), visible=False)
plt.subplots_adjust(left=.09, bottom=.14, right=.94, top=.95, wspace=.20, hspace=0)
plt.show()
fig.savefig('example.png',facecolor=fig.get_facecolor())
except Exception,e:
print 'main loop',str(e)
def screener(stock):
try:
#print 'doing',stock
sourceCode = urllib2.urlopen('http://finance.yahoo.com/q/ks?s='+stock).read()
pbr = sourceCode.split('Price/Book (mrq):</td><td class="yfnc_tabledata1">')[1].split('</td>')[0]
#print 'price to book ratio:',stock,pbr
if float(pbr) < 1:
#print 'price to book ratio:',stock,pbr
PEG5 = sourceCode.split('PEG Ratio (5 yr expected)<font size="-1"><sup>1</sup></font>:</td><td class="yfnc_tabledata1">')[1].split('</td>')[0]
if 0 < float(PEG5) < 2:
#print 'PEG forward 5 years',PEG5
DE = sourceCode.split('Total Debt/Equity (mrq):</td><td class="yfnc_tabledata1">')[1].split('</td>')[0]
#print 'Debt to Equity:',DE
#if 0 < float(DE) < 2:
PE12 = sourceCode.split('Trailing P/E (ttm, intraday):</td><td class="yfnc_tabledata1">')[1].split('</td>')[0]
#print 'Trailing PE (12mo):',PE12
if float(PE12) < 15:
# Your own SCREENED array....
#evenBetter.append(stock)
print '______________________________________'
print ''
print stock,'meets requirements'
print 'price to book:',pbr
print 'PEG forward 5 years',PEG5
print 'Trailing PE (12mo):',PE12
print 'Debt to Equity:',DE
print '______________________________________'
if showCharts.lower() == 'y':
try:
graphData(stock,25,50)
except Exception, e:
print 'failed the main quandl loop for reason of',str(e)
except Exception,e:
#print 'failed in the main loop',str(e)
pass
showCharts = raw_input('Would you like to show the financial data (Quandl) charts? (Y/N): ')
if showCharts.lower()=='y':
print 'okay, charts will be shown'
elif showCharts.lwoer()=='n':
print 'okay, charts will NOT be shown.'
else:
print 'invalid input, charts will NOT be shown.'
for eachStock in evenBetter:
screener(eachStock)
That's all for this series. For more tutorials, head to the