Preparing figure to Accept Finance Data





import urllib2
import time
import datetime
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.ticker as mticker
import matplotlib.dates as mdates
from matplotlib.finance import candlestick
import matplotlib
import pylab
matplotlib.rcParams.update({'font.size': 9})

eachStock = 'EBAY','TSLA','AAPL'

def rsiFunc(prices, n=14):
    deltas = np.diff(prices)
    seed = deltas[:n+1]
    up = seed[seed>=0].sum()/n
    down = -seed[seed<0].sum()/n
    rs = up/down
    rsi = np.zeros_like(prices)
    rsi[:n] = 100. - 100./(1.+rs)

    for i in range(n, len(prices)):
        delta = deltas[i-1] # cause the diff is 1 shorter

        if delta>0:
            upval = delta
            downval = 0.
        else:
            upval = 0.
            downval = -delta

        up = (up*(n-1) + upval)/n
        down = (down*(n-1) + downval)/n

        rs = up/down
        rsi[i] = 100. - 100./(1.+rs)

    return rsi

def movingaverage(values,window):
    weigths = np.repeat(1.0, window)/window
    smas = np.convolve(values, weigths, 'valid')
    return smas # as a numpy array

########EMA CALC ADDED############
def ExpMovingAverage(values, window):
    weights = np.exp(np.linspace(-1., 0., window))
    weights /= weights.sum()
    a =  np.convolve(values, weights, mode='full')[:len(values)]
    a[:window] = a[window]
    return a


def computeMACD(x, slow=26, fast=12):
    """
    compute the MACD (Moving Average Convergence/Divergence) using a fast and slow exponential moving avg'
    return value is emaslow, emafast, macd which are len(x) arrays
    """
    emaslow = ExpMovingAverage(x, slow)
    emafast = ExpMovingAverage(x, fast)
    return emaslow, emafast, emafast - emaslow

###############################
def graphData(stock,MA1,MA2):
    #######################################
    #######################################
    '''
        Use this to dynamically pull a stock:
    '''
    try:
        print 'Currently Pulling',stock
        print str(datetime.datetime.fromtimestamp(int(time.time())).strftime('%Y-%m-%d %H:%M:%S'))
        #Keep in mind this is close high low open, lol. 
        urlToVisit = 'http://chartapi.finance.yahoo.com/instrument/1.0/'+stock+'/chartdata;type=quote;range=10y/csv'
        stockFile =[]
        try:
            sourceCode = urllib2.urlopen(urlToVisit).read()
            splitSource = sourceCode.split('\n')
            for eachLine in splitSource:
                splitLine = eachLine.split(',')
                if len(splitLine)==6:
                    if 'values' not in eachLine:
                        stockFile.append(eachLine)
        except Exception, e:
            print str(e), 'failed to organize pulled data.'
    except Exception,e:
        print str(e), 'failed to pull pricing data'
    #######################################
    #######################################
    try:   
        date, closep, highp, lowp, openp, volume = np.loadtxt(stockFile,delimiter=',', unpack=True,
                                                              converters={ 0: mdates.strpdate2num('%Y%m%d')})
        x = 0
        y = len(date)
        newAr = []
        while x < y:
            appendLine = date[x],openp[x],closep[x],highp[x],lowp[x],volume[x]
            newAr.append(appendLine)
            x+=1
            
        Av1 = movingaverage(closep, MA1)
        Av2 = movingaverage(closep, MA2)

        SP = len(date[MA2-1:])
            
        fig = plt.figure(figsize=(10,8),facecolor='#07000d')

        ax1 = plt.subplot2grid((9,4), (1,0), rowspan=4, colspan=4, axisbg='#07000d')
        candlestick(ax1, newAr[-SP:], width=.6, colorup='#53c156', colordown='#ff1717')

        Label1 = str(MA1)+' SMA'
        Label2 = str(MA2)+' SMA'

        ax1.plot(date[-SP:],Av1[-SP:],'#e1edf9',label=Label1, linewidth=1.5)
        ax1.plot(date[-SP:],Av2[-SP:],'#4ee6fd',label=Label2, linewidth=1.5)
        
        ax1.grid(True, color='w')
        ax1.xaxis.set_major_locator(mticker.MaxNLocator(10))
        ax1.xaxis.set_major_formatter(mdates.DateFormatter('%Y-%m-%d'))
        ax1.yaxis.label.set_color("w")
        ax1.spines['bottom'].set_color("#5998ff")
        ax1.spines['top'].set_color("#5998ff")
        ax1.spines['left'].set_color("#5998ff")
        ax1.spines['right'].set_color("#5998ff")
        ax1.tick_params(axis='y', colors='w')
        plt.gca().yaxis.set_major_locator(mticker.MaxNLocator(prune='upper'))
        ax1.tick_params(axis='x', colors='w')
        plt.ylabel('Stock price and Volume')

        maLeg = plt.legend(loc=9, ncol=2, prop={'size':7},
                   fancybox=True, borderaxespad=0.)
        maLeg.get_frame().set_alpha(0.4)
        textEd = pylab.gca().get_legend().get_texts()
        pylab.setp(textEd[0:5], color = 'w')

        volumeMin = 0
        
        ax0 = plt.subplot2grid((9,4), (0,0), sharex=ax1, rowspan=1, colspan=4, axisbg='#07000d')
        rsi = rsiFunc(closep)
        rsiCol = '#c1f9f7'
        posCol = '#386d13'
        negCol = '#8f2020'
        
        ax0.plot(date[-SP:], rsi[-SP:], rsiCol, linewidth=1.5)
        ax0.axhline(70, color=negCol)
        ax0.axhline(30, color=posCol)
        ax0.fill_between(date[-SP:], rsi[-SP:], 70, where=(rsi[-SP:]>=70), facecolor=negCol, edgecolor=negCol, alpha=0.5)
        ax0.fill_between(date[-SP:], rsi[-SP:], 30, where=(rsi[-SP:]<=30), facecolor=posCol, edgecolor=posCol, alpha=0.5)
        ax0.set_yticks([30,70])
        ax0.yaxis.label.set_color("w")
        ax0.spines['bottom'].set_color("#5998ff")
        ax0.spines['top'].set_color("#5998ff")
        ax0.spines['left'].set_color("#5998ff")
        ax0.spines['right'].set_color("#5998ff")
        ax0.tick_params(axis='y', colors='w')
        ax0.tick_params(axis='x', colors='w')
        plt.ylabel('RSI')

        ax1v = ax1.twinx()
        ax1v.fill_between(date[-SP:],volumeMin, volume[-SP:], facecolor='#00ffe8', alpha=.4)
        ax1v.axes.yaxis.set_ticklabels([])
        ax1v.grid(False)
        ###Edit this to 3, so it's a bit larger
        ax1v.set_ylim(0, 3*volume.max())
        ax1v.spines['bottom'].set_color("#5998ff")
        ax1v.spines['top'].set_color("#5998ff")
        ax1v.spines['left'].set_color("#5998ff")
        ax1v.spines['right'].set_color("#5998ff")
        ax1v.tick_params(axis='x', colors='w')
        ax1v.tick_params(axis='y', colors='w')
        ax2 = plt.subplot2grid((9,4), (5,0), sharex=ax1, rowspan=1, colspan=4, axisbg='#07000d')
        fillcolor = '#00ffe8'
        nslow = 26
        nfast = 12
        nema = 9
        emaslow, emafast, macd = computeMACD(closep)
        ema9 = ExpMovingAverage(macd, nema)
        ax2.plot(date[-SP:], macd[-SP:], color='#4ee6fd', lw=2)
        ax2.plot(date[-SP:], ema9[-SP:], color='#e1edf9', lw=1)
        ax2.fill_between(date[-SP:], macd[-SP:]-ema9[-SP:], 0, alpha=0.5, facecolor=fillcolor, edgecolor=fillcolor)

        plt.gca().yaxis.set_major_locator(mticker.MaxNLocator(prune='upper'))
        ax2.spines['bottom'].set_color("#5998ff")
        ax2.spines['top'].set_color("#5998ff")
        ax2.spines['left'].set_color("#5998ff")
        ax2.spines['right'].set_color("#5998ff")
        ax2.tick_params(axis='x', colors='w')
        ax2.tick_params(axis='y', colors='w')
        ax2.yaxis.set_major_locator(mticker.MaxNLocator(nbins=5, prune='upper'))
        plt.ylabel('MACD', color='w')





        #################
        ax3 = plt.subplot2grid((9,4), (6,0), sharex=ax1, rowspan=1, colspan=4, axisbg='#07000d')
        ax3.spines['bottom'].set_color("#5998ff")
        ax3.spines['top'].set_color("#5998ff")
        ax3.spines['left'].set_color("#5998ff")
        ax3.spines['right'].set_color("#5998ff")
        ax3.tick_params(axis='x', colors='w')
        ax3.tick_params(axis='y', colors='w')
        ax3.yaxis.set_major_locator(mticker.MaxNLocator(nbins=4, prune='upper'))
        ax3.grid(True)

        ax4 = plt.subplot2grid((9,4), (7,0), sharex=ax1, rowspan=1, colspan=4, axisbg='#07000d')
        ax4.spines['bottom'].set_color("#5998ff")
        ax4.spines['top'].set_color("#5998ff")
        ax4.spines['left'].set_color("#5998ff")
        ax4.spines['right'].set_color("#5998ff")
        ax4.tick_params(axis='x', colors='w')
        ax4.tick_params(axis='y', colors='w')
        ax4.yaxis.set_major_locator(mticker.MaxNLocator(nbins=4, prune='upper'))
        ax4.grid(True)

        ax5 = plt.subplot2grid((9,4), (8,0), sharex=ax1, rowspan=1, colspan=4, axisbg='#07000d')
        ax5.spines['bottom'].set_color("#5998ff")
        ax5.spines['top'].set_color("#5998ff")
        ax5.spines['left'].set_color("#5998ff")
        ax5.spines['right'].set_color("#5998ff")
        ax5.tick_params(axis='x', colors='w')
        ax5.tick_params(axis='y', colors='w')
        ax5.yaxis.set_major_locator(mticker.MaxNLocator(nbins=4, prune='upper'))
        ax5.grid(True)
        for label in ax5.xaxis.get_ticklabels():
            label.set_rotation(45)
        

        #################


        plt.suptitle(stock,color='w')

        plt.setp(ax0.get_xticklabels(), visible=False)
        plt.setp(ax1.get_xticklabels(), visible=False)

        ###########################################
        plt.setp(ax2.get_xticklabels(), visible=False)
        plt.setp(ax3.get_xticklabels(), visible=False)
        plt.setp(ax4.get_xticklabels(), visible=False)
        
        

        plt.subplots_adjust(left=.09, bottom=.14, right=.94, top=.95, wspace=.20, hspace=0)
        plt.show()
        fig.savefig('example.png',facecolor=fig.get_facecolor())
           
    except Exception,e:
        print 'main loop',str(e)

while True:
    stock = raw_input('Stock to plot: ')
    graphData(stock,25,50)

		

The next tutorial:





  • Programming for Fundamental Investing
  • Getting Company Data
  • Price to Book ratio example
  • Python Stock Screener for Price to Book
  • Python Screener for PEG Ratio
  • Adding Price to Earnings
  • Getting all Russell 3000 stock tickers
  • Getting all Russell 3000 stock tickers part 2
  • More stock Screening
  • Completing Basic Stock Screener
  • Connecting with Quandl for Annual Earnings Data
  • Organizing Earnings Data
  • Graphing Finance Data
  • Finishing the Graphing
  • Adding the Graphing to the Screener
  • Preparing figure to Accept Finance Data
  • Adding Historical Earnings to Stock Screener Chart Data
  • Completing the Fundamental Investing Stock Screeners