import matplotlib import matplotlib.pyplot as plt import matplotlib.ticker as mticker import matplotlib.dates as mdates import numpy as np from numpy import loadtxt import time totalStart = time.time() date,bid,ask = np.loadtxt('GBPUSD1d.txt', unpack=True, delimiter=',', converters={0:mdates.strpdate2num('%Y%m%d%H%M%S')}) def percentChange(startPoint,currentPoint): try: x = ((float(currentPoint)-startPoint)/abs(startPoint))*100.00 if x == 0.0: return 0.000000001 else: return x except: return 0.0001 def patternStorage(): ''' The goal of patternFinder is to begin collection of %change patterns in the tick data. From there, we also collect the short-term outcome of this pattern. Later on, the length of the pattern, how far out we look to compare to, and the length of the compared range be changed, and even THAT can be machine learned to find the best of all 3 by comparing success rates.''' startTime = time.time() x = len(avgLine)-30 y = 31 currentStance = 'none' while y < x: pattern = [] p1 = percentChange(avgLine[y-30], avgLine[y-29]) p2 = percentChange(avgLine[y-30], avgLine[y-28]) p3 = percentChange(avgLine[y-30], avgLine[y-27]) p4 = percentChange(avgLine[y-30], avgLine[y-26]) p5 = percentChange(avgLine[y-30], avgLine[y-25]) p6 = percentChange(avgLine[y-30], avgLine[y-24]) p7 = percentChange(avgLine[y-30], avgLine[y-23]) p8 = percentChange(avgLine[y-30], avgLine[y-22]) p9 = percentChange(avgLine[y-30], avgLine[y-21]) p10= percentChange(avgLine[y-30], avgLine[y-20]) p11 = percentChange(avgLine[y-30], avgLine[y-19]) p12 = percentChange(avgLine[y-30], avgLine[y-18]) p13 = percentChange(avgLine[y-30], avgLine[y-17]) p14 = percentChange(avgLine[y-30], avgLine[y-16]) p15 = percentChange(avgLine[y-30], avgLine[y-15]) p16 = percentChange(avgLine[y-30], avgLine[y-14]) p17 = percentChange(avgLine[y-30], avgLine[y-13]) p18 = percentChange(avgLine[y-30], avgLine[y-12]) p19 = percentChange(avgLine[y-30], avgLine[y-11]) p20= percentChange(avgLine[y-30], avgLine[y-10]) p21 = percentChange(avgLine[y-30], avgLine[y-9]) p22 = percentChange(avgLine[y-30], avgLine[y-8]) p23 = percentChange(avgLine[y-30], avgLine[y-7]) p24 = percentChange(avgLine[y-30], avgLine[y-6]) p25 = percentChange(avgLine[y-30], avgLine[y-5]) p26 = percentChange(avgLine[y-30], avgLine[y-4]) p27 = percentChange(avgLine[y-30], avgLine[y-3]) p28 = percentChange(avgLine[y-30], avgLine[y-2]) p29 = percentChange(avgLine[y-30], avgLine[y-1]) p30= percentChange(avgLine[y-30], avgLine[y]) outcomeRange = avgLine[y+20:y+30] currentPoint = avgLine[y] try: avgOutcome = reduce(lambda x, y: x + y, outcomeRange) / len(outcomeRange) except Exception, e: print str(e) avgOutcome = 0 futureOutcome = percentChange(currentPoint, avgOutcome) ''' print 'where we are historically:',currentPoint print 'soft outcome of the horizon:',avgOutcome print 'This pattern brings a future change of:',futureOutcome print '_______' print p1, p2, p3, p4, p5, p6, p7, p8, p9, p10 ''' pattern.append(p1) pattern.append(p2) pattern.append(p3) pattern.append(p4) pattern.append(p5) pattern.append(p6) pattern.append(p7) pattern.append(p8) pattern.append(p9) pattern.append(p10) pattern.append(p11) pattern.append(p12) pattern.append(p13) pattern.append(p14) pattern.append(p15) pattern.append(p16) pattern.append(p17) pattern.append(p18) pattern.append(p19) pattern.append(p20) pattern.append(p21) pattern.append(p22) pattern.append(p23) pattern.append(p24) pattern.append(p25) pattern.append(p26) pattern.append(p27) pattern.append(p28) pattern.append(p29) pattern.append(p30) patternAr.append(pattern) performanceAr.append(futureOutcome) y+=1 endTime = time.time() print len(patternAr) print len(performanceAr) print 'Pattern storing took:', endTime-startTime def currentPattern(): mostRecentPoint = avgLine[-1] cp1 = percentChange(avgLine[-31],avgLine[-30]) cp2 = percentChange(avgLine[-31],avgLine[-29]) cp3 = percentChange(avgLine[-31],avgLine[-28]) cp4 = percentChange(avgLine[-31],avgLine[-27]) cp5 = percentChange(avgLine[-31],avgLine[-26]) cp6 = percentChange(avgLine[-31],avgLine[-25]) cp7 = percentChange(avgLine[-31],avgLine[-24]) cp8 = percentChange(avgLine[-31],avgLine[-23]) cp9 = percentChange(avgLine[-31],avgLine[-22]) cp10= percentChange(avgLine[-31],avgLine[-21]) cp11 = percentChange(avgLine[-31],avgLine[-20]) cp12 = percentChange(avgLine[-31],avgLine[-19]) cp13 = percentChange(avgLine[-31],avgLine[-18]) cp14 = percentChange(avgLine[-31],avgLine[-17]) cp15 = percentChange(avgLine[-31],avgLine[-16]) cp16 = percentChange(avgLine[-31],avgLine[-15]) cp17 = percentChange(avgLine[-31],avgLine[-14]) cp18 = percentChange(avgLine[-31],avgLine[-13]) cp19 = percentChange(avgLine[-31],avgLine[-12]) cp20= percentChange(avgLine[-31],avgLine[-11]) cp21 = percentChange(avgLine[-31],avgLine[-10]) cp22 = percentChange(avgLine[-31],avgLine[-9]) cp23 = percentChange(avgLine[-31],avgLine[-8]) cp24 = percentChange(avgLine[-31],avgLine[-7]) cp25 = percentChange(avgLine[-31],avgLine[-6]) cp26 = percentChange(avgLine[-31],avgLine[-5]) cp27 = percentChange(avgLine[-31],avgLine[-4]) cp28 = percentChange(avgLine[-31],avgLine[-3]) cp29 = percentChange(avgLine[-31],avgLine[-2]) cp30= percentChange(avgLine[-31],avgLine[-1]) patForRec.append(cp1) patForRec.append(cp2) patForRec.append(cp3) patForRec.append(cp4) patForRec.append(cp5) patForRec.append(cp6) patForRec.append(cp7) patForRec.append(cp8) patForRec.append(cp9) patForRec.append(cp10) patForRec.append(cp11) patForRec.append(cp12) patForRec.append(cp13) patForRec.append(cp14) patForRec.append(cp15) patForRec.append(cp16) patForRec.append(cp17) patForRec.append(cp18) patForRec.append(cp19) patForRec.append(cp20) patForRec.append(cp21) patForRec.append(cp22) patForRec.append(cp23) patForRec.append(cp24) patForRec.append(cp25) patForRec.append(cp26) patForRec.append(cp27) patForRec.append(cp28) patForRec.append(cp29) patForRec.append(cp30) def graphRawFX(): fig=plt.figure(figsize=(10,7)) ax1 = plt.subplot2grid((40,40), (0,0), rowspan=40, colspan=40) ax1.plot(date,bid) ax1.plot(date,ask) ax1.xaxis.set_major_formatter(mdates.DateFormatter('%Y-%m-%d %H:%M:%S')) plt.grid(True) for label in ax1.xaxis.get_ticklabels(): label.set_rotation(45) plt.gca().get_yaxis().get_major_formatter().set_useOffset(False) ax1_2 = ax1.twinx() ax1_2.fill_between(date, 0, (ask-bid), facecolor='g',alpha=.3) plt.subplots_adjust(bottom=.23) plt.show() def patternRecognition(): plotPatAr = [] patFound = 0 for eachPattern in patternAr: sim1 = 100.00 - abs(percentChange(eachPattern[0], patForRec[0])) sim2 = 100.00 - abs(percentChange(eachPattern[1], patForRec[1])) sim3 = 100.00 - abs(percentChange(eachPattern[2], patForRec[2])) sim4 = 100.00 - abs(percentChange(eachPattern[3], patForRec[3])) sim5 = 100.00 - abs(percentChange(eachPattern[4], patForRec[4])) sim6 = 100.00 - abs(percentChange(eachPattern[5], patForRec[5])) sim7 = 100.00 - abs(percentChange(eachPattern[6], patForRec[6])) sim8 = 100.00 - abs(percentChange(eachPattern[7], patForRec[7])) sim9 = 100.00 - abs(percentChange(eachPattern[8], patForRec[8])) sim10 = 100.00 - abs(percentChange(eachPattern[9], patForRec[9])) sim11 = 100.00 - abs(percentChange(eachPattern[10], patForRec[10])) sim12 = 100.00 - abs(percentChange(eachPattern[11], patForRec[11])) sim13 = 100.00 - abs(percentChange(eachPattern[12], patForRec[12])) sim14 = 100.00 - abs(percentChange(eachPattern[13], patForRec[13])) sim15 = 100.00 - abs(percentChange(eachPattern[14], patForRec[14])) sim16 = 100.00 - abs(percentChange(eachPattern[15], patForRec[15])) sim17 = 100.00 - abs(percentChange(eachPattern[16], patForRec[16])) sim18 = 100.00 - abs(percentChange(eachPattern[17], patForRec[17])) sim19 = 100.00 - abs(percentChange(eachPattern[18], patForRec[18])) sim20 = 100.00 - abs(percentChange(eachPattern[19], patForRec[19])) sim21 = 100.00 - abs(percentChange(eachPattern[20], patForRec[20])) sim22 = 100.00 - abs(percentChange(eachPattern[21], patForRec[21])) sim23 = 100.00 - abs(percentChange(eachPattern[22], patForRec[22])) sim24 = 100.00 - abs(percentChange(eachPattern[23], patForRec[23])) sim25 = 100.00 - abs(percentChange(eachPattern[24], patForRec[24])) sim26 = 100.00 - abs(percentChange(eachPattern[25], patForRec[25])) sim27 = 100.00 - abs(percentChange(eachPattern[26], patForRec[26])) sim28 = 100.00 - abs(percentChange(eachPattern[27], patForRec[27])) sim29 = 100.00 - abs(percentChange(eachPattern[28], patForRec[28])) sim30 = 100.00 - abs(percentChange(eachPattern[29], patForRec[29])) howSim = (sim1+sim2+sim3+sim4+sim5+sim6+sim7+sim8+sim9+sim10 +sim11+sim12+sim13+sim14+sim15+sim16+sim17+sim18+sim19+sim20 +sim21+sim22+sim23+sim24+sim25+sim26+sim27+sim28+sim29+sim30)/30.00 if howSim > 65: patdex = patternAr.index(eachPattern) patFound = 1 xp = [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30] ############# plotPatAr.append(eachPattern) if patFound == 1: fig = plt.figure(figsize=(10,6)) for eachPatt in plotPatAr: futurePoints = patternAr.index(eachPatt) if performanceAr[futurePoints] > patForRec[9]: pcolor = '#24bc00' else: pcolor = '#d40000' plt.plot(xp, eachPatt) #################### plt.scatter(35, performanceAr[futurePoints],c=pcolor,alpha=.4) realOutcomeRange = allData[toWhat+20:toWhat+30] realAvgOutcome = reduce(lambda x, y: x + y, realOutcomeRange) / len(realOutcomeRange) realMovement = percentChange(allData[toWhat],realAvgOutcome) plt.scatter(40, realMovement, c='#54fff7',s=25) plt.plot(xp, patForRec, '#54fff7', linewidth = 3) plt.grid(True) plt.title('Pattern Recognition.\nCyan line is the current pattern. Other lines are similar patterns from the past.\nPredicted outcomes are color-coded to reflect a positive or negative prediction.\nThe Cyan dot marks where the pattern went.\nOnly data in the past is used to generate patterns and predictions.') plt.show() dataLength = int(bid.shape[0]) print 'data length is', dataLength allData = ((bid+ask)/2) toWhat = 53500 while toWhat < dataLength: avgLine = ((bid+ask)/2) avgLine = avgLine[:toWhat] patternAr = [] performanceAr = [] patForRec = [] #avgOutcome = reduce(lambda x, y: x + y, outcomeRange) / len(outcomeRange) patternStorage() currentPattern() patternRecognition() totalEnd = time.time()-totalStart print 'Entire processing took:',totalEnd,'seconds' toWhat += 1
The next 3 parts are video-only, along with the final source code:
So what we want to do now is back test this. That said, if you've played with this data enough, you will see that, in its current form, it is very slow. If we were to run through everything here, ignoring charting it... just running thru, storing patterns, comparing patterns at every plot.... with our current processing time, a full back test of 1 month of this tick data, would land us at about 1 year's processing time. Now there are a few fixes here that are all quite viable. The issue of processing time MOSTLY is because of python's single threaded nature. Natively, it is simply not capable of anything otherwise. There are methods for threading with py, but they're somewhat futile here 1. Using the threading module in python: pythonprogramming.net/threading-tutorial-python/ 2. Threading on your own via creating and running multiple scripts that handle various sections in %s of the dataset. 3. CUDA. CUDA allows us to use our GPU to do processing. I might possibly bring in some videos on CUDA. So if you're interested, get a CUDA enabled gpu (meaning an NVIDIA GPU). GPUs are typically just better at processing large bulks of calcuations. 4. Change timeframe of data. Honestly, ... we probbbbably don't need to be using intra-second tick data. You could do this with even 1 minute... and that would cut down our size substantially. At least 60x smaller. So that's a start at handling where we are. That said, there are some things that we could change to make this script far more efficient than it is, but processing time will always be a few seconds if we have a large number of patterns.... there is no avoiding that part in the single-threaded py when py is acting alone. So that in mind, we see there is a large hurdle coming up. So we need to decide whether or not we should prepare to jump it, or fall out of the race. Therefor, I propose a backtest on this 1 day of data, against patterns. From our visual results, we can see that 1. pattern recognition is working. 2. ... it appears to predict direction successfully, even if all we are doing is averaging the outcome.
import matplotlib import matplotlib.pyplot as plt import matplotlib.ticker as mticker import matplotlib.dates as mdates import numpy as np from numpy import loadtxt import time totalStart = time.time() date,bid,ask = np.loadtxt('GBPUSD1d.txt', unpack=True, delimiter=',', converters={0:mdates.strpdate2num('%Y%m%d%H%M%S')}) def percentChange(startPoint,currentPoint): try: x = ((float(currentPoint)-startPoint)/abs(startPoint))*100.00 if x == 0.0: return 0.000000001 else: return x except: return 0.0001 def patternStorage(): ''' The goal of patternFinder is to begin collection of %change patterns in the tick data. From there, we also collect the short-term outcome of this pattern. Later on, the length of the pattern, how far out we look to compare to, and the length of the compared range be changed, and even THAT can be machine learned to find the best of all 3 by comparing success rates.''' startTime = time.time() x = len(avgLine)-30 y = 31 currentStance = 'none' while y < x: pattern = [] p1 = percentChange(avgLine[y-30], avgLine[y-29]) p2 = percentChange(avgLine[y-30], avgLine[y-28]) p3 = percentChange(avgLine[y-30], avgLine[y-27]) p4 = percentChange(avgLine[y-30], avgLine[y-26]) p5 = percentChange(avgLine[y-30], avgLine[y-25]) p6 = percentChange(avgLine[y-30], avgLine[y-24]) p7 = percentChange(avgLine[y-30], avgLine[y-23]) p8 = percentChange(avgLine[y-30], avgLine[y-22]) p9 = percentChange(avgLine[y-30], avgLine[y-21]) p10= percentChange(avgLine[y-30], avgLine[y-20]) p11 = percentChange(avgLine[y-30], avgLine[y-19]) p12 = percentChange(avgLine[y-30], avgLine[y-18]) p13 = percentChange(avgLine[y-30], avgLine[y-17]) p14 = percentChange(avgLine[y-30], avgLine[y-16]) p15 = percentChange(avgLine[y-30], avgLine[y-15]) p16 = percentChange(avgLine[y-30], avgLine[y-14]) p17 = percentChange(avgLine[y-30], avgLine[y-13]) p18 = percentChange(avgLine[y-30], avgLine[y-12]) p19 = percentChange(avgLine[y-30], avgLine[y-11]) p20= percentChange(avgLine[y-30], avgLine[y-10]) p21 = percentChange(avgLine[y-30], avgLine[y-9]) p22 = percentChange(avgLine[y-30], avgLine[y-8]) p23 = percentChange(avgLine[y-30], avgLine[y-7]) p24 = percentChange(avgLine[y-30], avgLine[y-6]) p25 = percentChange(avgLine[y-30], avgLine[y-5]) p26 = percentChange(avgLine[y-30], avgLine[y-4]) p27 = percentChange(avgLine[y-30], avgLine[y-3]) p28 = percentChange(avgLine[y-30], avgLine[y-2]) p29 = percentChange(avgLine[y-30], avgLine[y-1]) p30= percentChange(avgLine[y-30], avgLine[y]) outcomeRange = avgLine[y+20:y+30] currentPoint = avgLine[y] try: avgOutcome = reduce(lambda x, y: x + y, outcomeRange) / len(outcomeRange) except Exception, e: print str(e) avgOutcome = 0 futureOutcome = percentChange(currentPoint, avgOutcome) ''' print 'where we are historically:',currentPoint print 'soft outcome of the horizon:',avgOutcome print 'This pattern brings a future change of:',futureOutcome print '_______' print p1, p2, p3, p4, p5, p6, p7, p8, p9, p10 ''' pattern.append(p1) pattern.append(p2) pattern.append(p3) pattern.append(p4) pattern.append(p5) pattern.append(p6) pattern.append(p7) pattern.append(p8) pattern.append(p9) pattern.append(p10) pattern.append(p11) pattern.append(p12) pattern.append(p13) pattern.append(p14) pattern.append(p15) pattern.append(p16) pattern.append(p17) pattern.append(p18) pattern.append(p19) pattern.append(p20) pattern.append(p21) pattern.append(p22) pattern.append(p23) pattern.append(p24) pattern.append(p25) pattern.append(p26) pattern.append(p27) pattern.append(p28) pattern.append(p29) pattern.append(p30) patternAr.append(pattern) performanceAr.append(futureOutcome) y+=1 endTime = time.time() print len(patternAr) print len(performanceAr) print 'Pattern storing took:', endTime-startTime def currentPattern(): mostRecentPoint = avgLine[-1] cp1 = percentChange(avgLine[-31],avgLine[-30]) cp2 = percentChange(avgLine[-31],avgLine[-29]) cp3 = percentChange(avgLine[-31],avgLine[-28]) cp4 = percentChange(avgLine[-31],avgLine[-27]) cp5 = percentChange(avgLine[-31],avgLine[-26]) cp6 = percentChange(avgLine[-31],avgLine[-25]) cp7 = percentChange(avgLine[-31],avgLine[-24]) cp8 = percentChange(avgLine[-31],avgLine[-23]) cp9 = percentChange(avgLine[-31],avgLine[-22]) cp10= percentChange(avgLine[-31],avgLine[-21]) cp11 = percentChange(avgLine[-31],avgLine[-20]) cp12 = percentChange(avgLine[-31],avgLine[-19]) cp13 = percentChange(avgLine[-31],avgLine[-18]) cp14 = percentChange(avgLine[-31],avgLine[-17]) cp15 = percentChange(avgLine[-31],avgLine[-16]) cp16 = percentChange(avgLine[-31],avgLine[-15]) cp17 = percentChange(avgLine[-31],avgLine[-14]) cp18 = percentChange(avgLine[-31],avgLine[-13]) cp19 = percentChange(avgLine[-31],avgLine[-12]) cp20= percentChange(avgLine[-31],avgLine[-11]) cp21 = percentChange(avgLine[-31],avgLine[-10]) cp22 = percentChange(avgLine[-31],avgLine[-9]) cp23 = percentChange(avgLine[-31],avgLine[-8]) cp24 = percentChange(avgLine[-31],avgLine[-7]) cp25 = percentChange(avgLine[-31],avgLine[-6]) cp26 = percentChange(avgLine[-31],avgLine[-5]) cp27 = percentChange(avgLine[-31],avgLine[-4]) cp28 = percentChange(avgLine[-31],avgLine[-3]) cp29 = percentChange(avgLine[-31],avgLine[-2]) cp30= percentChange(avgLine[-31],avgLine[-1]) patForRec.append(cp1) patForRec.append(cp2) patForRec.append(cp3) patForRec.append(cp4) patForRec.append(cp5) patForRec.append(cp6) patForRec.append(cp7) patForRec.append(cp8) patForRec.append(cp9) patForRec.append(cp10) patForRec.append(cp11) patForRec.append(cp12) patForRec.append(cp13) patForRec.append(cp14) patForRec.append(cp15) patForRec.append(cp16) patForRec.append(cp17) patForRec.append(cp18) patForRec.append(cp19) patForRec.append(cp20) patForRec.append(cp21) patForRec.append(cp22) patForRec.append(cp23) patForRec.append(cp24) patForRec.append(cp25) patForRec.append(cp26) patForRec.append(cp27) patForRec.append(cp28) patForRec.append(cp29) patForRec.append(cp30) def graphRawFX(): fig=plt.figure(figsize=(10,7)) ax1 = plt.subplot2grid((40,40), (0,0), rowspan=40, colspan=40) ax1.plot(date,bid) ax1.plot(date,ask) ax1.xaxis.set_major_formatter(mdates.DateFormatter('%Y-%m-%d %H:%M:%S')) plt.grid(True) for label in ax1.xaxis.get_ticklabels(): label.set_rotation(45) plt.gca().get_yaxis().get_major_formatter().set_useOffset(False) ax1_2 = ax1.twinx() ax1_2.fill_between(date, 0, (ask-bid), facecolor='g',alpha=.3) plt.subplots_adjust(bottom=.23) plt.show() def patternRecognition(): ###### predictedOutcomesAr = [] ###### plotPatAr = [] patFound = 0 for eachPattern in patternAr: sim1 = 100.00 - abs(percentChange(eachPattern[0], patForRec[0])) sim2 = 100.00 - abs(percentChange(eachPattern[1], patForRec[1])) sim3 = 100.00 - abs(percentChange(eachPattern[2], patForRec[2])) sim4 = 100.00 - abs(percentChange(eachPattern[3], patForRec[3])) sim5 = 100.00 - abs(percentChange(eachPattern[4], patForRec[4])) sim6 = 100.00 - abs(percentChange(eachPattern[5], patForRec[5])) sim7 = 100.00 - abs(percentChange(eachPattern[6], patForRec[6])) sim8 = 100.00 - abs(percentChange(eachPattern[7], patForRec[7])) sim9 = 100.00 - abs(percentChange(eachPattern[8], patForRec[8])) sim10 = 100.00 - abs(percentChange(eachPattern[9], patForRec[9])) sim11 = 100.00 - abs(percentChange(eachPattern[10], patForRec[10])) sim12 = 100.00 - abs(percentChange(eachPattern[11], patForRec[11])) sim13 = 100.00 - abs(percentChange(eachPattern[12], patForRec[12])) sim14 = 100.00 - abs(percentChange(eachPattern[13], patForRec[13])) sim15 = 100.00 - abs(percentChange(eachPattern[14], patForRec[14])) sim16 = 100.00 - abs(percentChange(eachPattern[15], patForRec[15])) sim17 = 100.00 - abs(percentChange(eachPattern[16], patForRec[16])) sim18 = 100.00 - abs(percentChange(eachPattern[17], patForRec[17])) sim19 = 100.00 - abs(percentChange(eachPattern[18], patForRec[18])) sim20 = 100.00 - abs(percentChange(eachPattern[19], patForRec[19])) sim21 = 100.00 - abs(percentChange(eachPattern[20], patForRec[20])) sim22 = 100.00 - abs(percentChange(eachPattern[21], patForRec[21])) sim23 = 100.00 - abs(percentChange(eachPattern[22], patForRec[22])) sim24 = 100.00 - abs(percentChange(eachPattern[23], patForRec[23])) sim25 = 100.00 - abs(percentChange(eachPattern[24], patForRec[24])) sim26 = 100.00 - abs(percentChange(eachPattern[25], patForRec[25])) sim27 = 100.00 - abs(percentChange(eachPattern[26], patForRec[26])) sim28 = 100.00 - abs(percentChange(eachPattern[27], patForRec[27])) sim29 = 100.00 - abs(percentChange(eachPattern[28], patForRec[28])) sim30 = 100.00 - abs(percentChange(eachPattern[29], patForRec[29])) howSim = (sim1+sim2+sim3+sim4+sim5+sim6+sim7+sim8+sim9+sim10 +sim11+sim12+sim13+sim14+sim15+sim16+sim17+sim18+sim19+sim20 +sim21+sim22+sim23+sim24+sim25+sim26+sim27+sim28+sim29+sim30)/30.00 if howSim > 70: patdex = patternAr.index(eachPattern) patFound = 1 xp = [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30] ############# plotPatAr.append(eachPattern) predArray = [] if patFound == 1: #fig = plt.figure(figsize=(10,6)) for eachPatt in plotPatAr: futurePoints = patternAr.index(eachPatt) if performanceAr[futurePoints] > patForRec[29]: pcolor = '#24bc00' ##### predArray.append(1.000) else: pcolor = '#d40000' ####### predArray.append(-1.000) #plt.plot(xp, eachPatt) predictedOutcomesAr.append(performanceAr[futurePoints]) #plt.scatter(35, performanceAr[futurePoints],c=pcolor,alpha=.4) realOutcomeRange = allData[toWhat+20:toWhat+30] realAvgOutcome = reduce(lambda x, y: x + y, realOutcomeRange) / len(realOutcomeRange) predictedAvgOutcome = reduce(lambda x, y: x + y, predictedOutcomesAr) / len(predictedOutcomesAr) realMovement = percentChange(allData[toWhat],realAvgOutcome) ####### print predArray predictionAverage = reduce(lambda x, y: x + y, predArray) / len(predArray) print predictionAverage if predictionAverage < 0: print 'drop predicted' print patForRec[29] print realMovement if realMovement < patForRec[29]: accuracyArray.append(100) else: accuracyArray.append(0) if predictionAverage > 0: print 'rise predicted' print patForRec[29] print realMovement if realMovement > patForRec[29]: accuracyArray.append(100) else: accuracyArray.append(0) ####### #plt.scatter(40, realMovement, c='#54fff7',s=25) #plt.scatter(40, predictedAvgOutcome, c='#008db8',s=25) #plt.plot(xp, patForRec, '#54fff7', linewidth = 3) #plt.grid(True) #plt.title('Pattern Recognition.\nCyan line is the current pattern. Other lines are similar patterns from the past.\nPredicted outcomes are color-coded to reflect a positive or negative prediction.\nThe Cyan dot marks where the pattern went.\nOnly data in the past is used to generate patterns and predictions.') #plt.show() dataLength = int(bid.shape[0]) print 'data length is', dataLength allData = ((bid+ask)/2) toWhat = 55000 avgLine = ((bid+ask)/2) patternAr = [] performanceAr = [] patternStorage() ###### accuracyArray = [] #### samps = 0 while toWhat < dataLength: ###### avgLine = avgLine[:toWhat] patForRec = [] currentPattern() patternRecognition() totalEnd = time.time()-totalStart print accuracyArray accuracyAverage = reduce(lambda x, y: x + y, accuracyArray) / len(accuracyArray) toWhat += 1 samps +=1 print 'Entire (18) processing took:',totalEnd,'seconds' print 'Backtested Accuracy is',str(accuracyAverage)+'% after',samps,'actionable trades'
That's all for this series. For more tutorials, head to the